
www.manaraa.com

A Survey of Distributed Systems in
Bioinformatics

Fabrice Bernardi1 Jean-François Santucci2

David Hill3

Research Report LIMOS/RR04-02

19 janvier 2004

1bernardi@isima.fr
2santucci@univ-corse.fr
3drch@isima.fr



www.manaraa.com

Abstract

There is no doubts that bioinformatics is and will be one of the major appli-
cation domains in computational power needs and researches. Very exten-
sive databases and power-consuming algorithms have been designed and the
most promising approach to provide solutions for data-mining or computa-
tion is to use distributed systems. This term is widely used and englobes
various specific approaches. We propose in this article a survey of some dis-
tributed systems that are used or applied in bioinformatics. We cover basic
Client/Server and Peer-To-Peer systems, Clusters and Grids approaches, but
also Distributed Agents systems. There is one main voluntary limitation to
this review: we focus only on available/reusable, Open-Source, free or edu-
cational solutions.

Keywords: Bioinformatics, Distributed Systems, Review, Grid, Cluster,
Agent, P2P

Résumé

Il ne fait aucun doute que la bioinformatique est et sera un des domaines d’ap-
plication majeurs dans la recherche de puissance de calcul. De très grandes
bases de données et des algorithmes très coûteux en temps CPU ont été
définis et la meilleure solution pour répondre aux problèmes posés est d’uti-
liser des architectures distribuées. Ce terme est très couramment employé
actuellement et englobe différentes approches. Nous proposons dans cet ar-
ticle un état de l’art de systèmes distribués en bioinformatique. Nous cou-
vrons les systèmes Client/Serveur basiques et Peer-to-Peer, les Clusters, les
Grilles, mais également les systèmes d’agents distribués. Il existe une limi-
tation volontaire à ce travail : nous nous concentrons uniquement sur les
solutions disponibles/réutilisables, Open-Source, gratuites ou du domaine de
l’éducation.

Mots clés : Bioinformatique, Systèmes distribués, État de l’art, Grille, Clus-
ter, Agent, P2P

1



www.manaraa.com

1 Introduction

Bioinformatics, defined as “the application of information science and tech-
nology to the management of biomedical data and information” by [26] is
currently a vast research field. Primarily defined by biologists, many com-
puter scientists have been convinced to work on this new science. Actually,
some papers specially intended to them can be found in the literature, like
[38] or [44].

One of the main characteristics of bioinformatics is the huge amount of
available data stored in very large public databases. The problem is so im-
portant that many researches are performed to provide effective solutions.
More information can be found in [74], which proposes a review for integrat-
ing the various existing databases. Thus, one of the most important concerns
of bioinformatics is to retrieve and to exploit these databases which contains
many information about biological entities and can be used for instance for
gene sequence finding and recognition by alignment as shown by [83]. This
amount of data and computational needs makes it possible (and necessary)
to use distributed or parallel architectures as shown by [80], [86] or [24].
[81] and [49] provides a lot of links of bioinformatics tools and shows how
extensive the domain is.

We propose in this article a survey of some distributed systems applied
in bioinformatics. There is one main voluntary limitation to this review: we
focus only on available/reusable, Open-Source, free or educational solutions.
Some proprietary or non-free solutions exist, but do not appear here.

This article is articulated following three sections. In a first one, we
provide an historical perspective of the development of computer networks,
and especially of the Internet. In a second one, we give a brief taxonomy
of distributed systems as they are usually defined. We give the definition
of Client/Server systems, Peer-To-Peer systems, Clusters, Grid, Agent-based
distributed systems and describe the three main communication models that
can be used. The expert reader could note some debatable points in this
section (like distinguishing grids and Peer-To-Peer systems), but this is the
best way we found to classify the various toolkits able to be used in bioinfor-
matics. This classification is covered by a third section that describes some
systems used in the bioinformatics area. We can note that we do not give
very precisely how these systems are used in bioinformatics, but we provide
many references in this objective.

2



www.manaraa.com

2 Historical Perspective

If we had to trace what could be the beginning of distributed systems, we
have to recall to our mind that at the beginning of the sixties, Leonard
Kleinrock a scientist working at MIT, published a paper on packet switching
entitled “Information flow in large communication Nets” (see [54]). Still at
MIT, J.C.R. Licklider envisioned a global interconnected set of computers
where everyone could access programs and information from any sites. The
first book on the packet switching theory was published in 1964, again by
Kleinrock (see [55]).

In 1965, the first wide area network was built with a low speed tele-
phone line connecting Massachusetts and California time-shared computers
that were able to work together. Also in 1965, the US Department of De-
fense Advanced Research Project Association (DARPA), started to work on
ARPANET (the Advanced Research Program Agency Network). In 1966, the
concept of “computer network” was introduced at DARPA and published in
1967. In 1969, the File Transfer Protocol (FTP) helped in distributing the
RFCs (Request For Comments) which were fast and easy ways to share ideas
amongst network researchers. It was also at the end of the sixties that Ken
Thompson, Dennis Ritchie and others started to work on what will become
Unix at AT&T Bell Laboratories. At the same time in 1969, ARPANET was
connecting 4 universities & research institutes (Stanford Research Institute,
UCLA, UC Santa Barbara and the University of Utah).

In 1972, the InterNetworking Working Group (INWG) was retained to
control the growing network and the first e-mails were introduced to public.
The next year saw the introduction of the Ethernet Protocol at Xerox PARC
(Palo Alto Research Center). Year 1974 saw both the arrival of Telnet, a
commercial version of ARPANET and the rewriting of Unix V.4 with the C
language, thus enabling a better portability of this operating system among
different computers. In 1979, the USENET newsgroup was introduced by
students from North Carolina and Duke Universities. The beginning of the
eighties saw the spreading of IBM personal computers and its compatibles.

The term Internet was introduced in 1982, and in 1983, the old NCP
(Network Control Protocol) introduced in 1970 was replaced by the current
TCP/IP protocol. Five years later, in 1988, the spreading of the Internet
Worm showed the vulnerabilities of the Internet, thus leading to the forma-
tion of the Computer Emergency Response Team (CERT) to address security
issues. At the Palo Alto DEC Research Center, the distribution of comput-
ing tasks sent via e-mails to workstations inside and outside their laboratory
was successfully achieved in 1988 (results were also collected via e-mails). A
few years later, in 1991, the concept of World Wide Web is born and in the

3



www.manaraa.com

same year Linus Torvalds distributed the source code of the Linux kernel as
freeware.

In 1993, the first Web browser, named Mosaic is released and the first
RSA Security challenge is won by a team of 600 volunteers providing their
distributed computing resources. In 1994, version 1.0 of Linux, produced by
Linus Torvalds and a world wide team of hackers, is available for download.
The annual growth rate of the Web between 1993 and 1994 is over 300%.
The following year saw the introduction of an alpha version of Java, an
object-oriented language with a portable byte-code able to be transmitted
and executed on the Internet. The GIMPS distributed computing project,
searching for larger and larger prime numbers is launched in 1996. On August
the 26th of 1997, the PI challenge is launched by Fabrice Bellard to find the
1000th billion binary digit of PI, this goal is reached on September 22nd.

In 1999, the concept of Internet computing was providing at least 3 times
more computing power (33 Teraflops) than any other supercomputers with
the Seti@home project of Berkeley University, which analyzed data from
the famous Arecibo radio-telescope. Clients software were available for PC,
Macintosh and Unix. More useful projects appeared with the new millen-
nium. In year 2000, the Casino-21 project goal was to simulate the dynamics
of the earth’s climate for the next century. In year 2001, Barabasi from
Notre Dame University introduced in [11] and [10] the concept of parasitic
computing, explaining and showing how Internet protocols could be used to
compute complex linear programming problems. More recently at the end
of year 2001, the French Decrypton project was setup to compute and com-
pare 50000 protein sequences with a distributed client software developed
by Genomining and IBM. More than 75000 Internet users participated to
reach the first results in 2 months, 1170 years would have been necessary
to achieve the same result on a single computer. The collected data is now
publicly available for the international community of scientists working in
bioinformatics.

In the next section, we propose a taxonomy of distributed technologies
that have emerged following all these events.

3 Taxonomy of Distributed Technologies

Many presentations and definitions of distributed systems can be found in
the literature (see [80], [34], [35] or [52] for a quite complete list) but we
choose to present them following four axes: classical client/server systems,
massive distributed architectures, agent-based systems and the communica-
tion models able to be implemented in these kinds of systems.

4



www.manaraa.com

3.1 Basic Client/Server-based Model

The classical Client/Server approach is the most used nowadays by the Inter-
net community (Web, FTP,...). For [63], this kind of remote operations are
“the most basic form in distributed systems”. The term Client/Server was
first used in the early 80s in reference to personal computers on a network.

Figure 1: Basic Client/Server Model

As shown in Figure 1, the operating scheme is very simple: one process
(the Client) sends a message to another (the Server), asking it to do some
work. Once the result has been processed, the Server sends back a message
and the result of the work. Most of the classical protocols (HTTP, FTP,...)
are based on this concept, and a lot of techniques have been developed in
order to improve performances: buffers, caches,... Any entity in such a sys-
tem can play both roles but for a different purpose, i.e. server and client
functionality residing on separate nodes.

This concept of Client/Server, even if very simple, can be seen as a theo-
retical basis for many (and much more complicated) distributed approaches.

3.2 Metacomputing Architectures

Metacomputing is also known as “Network-based Distributed Computing”.
A rough definition of a metacomputing system can be: a networked virtual
supercomputer which shares resources. For [48], its main motivation (with
respect to supercomputing) was driven by “the recognition that the whole can
be greater than the sum of the parts”. The operating scheme is to connect
heterogeneous computing resources in order to form a super-computational
one. Another motivation was the geographically separated clients and their
need to collaborate via the network. In such a scheme, computers or clusters
play the similar role as microprocessors within supercomputers.

5



www.manaraa.com

Peer-To-Peer systems, Clusters and Grids are forms of Metacomputing
systems.

3.2.1 Peer-to-Peer, Hybrid Peer-to-Peer Systems and Internet
Computing

A Peer is defined as an entity with capabilities similar to other entities on a
system. Peer-To-Peer (P2P) applications are essentially used for data storage
and exchange as shown by [12] or [61]. Even such systems are very popular
nowadays, the concept is not all that new: the underlying technologies have
been defined at least at the same time with USENET.

The basic principles of this approach is to avoid network vulnerabilities
and to discover resources by diffusion. Data are often associated with meta-
descriptions allowing them to be accessed using search engines or Web-based
front-ends. We can draw a distinction between “pure” and “hybrids” P2P
applications (see Figure 2). In the first case, all participant computers are
peers. In this scheme, no central server is used to control, coordinate or
manage the exchanges among the peers. In the second case, the application
relies on a central server to perform some of the required functions. The
degree of involvement varies with the application.

(a) (b)

Figure 2: “Pure” (a) and “Hybrid” (b) Peer-To-Peer Models

Several goals can be achieved using P2P. The first one is cost shar-
ing/reduction, since centralized systems that serve many clients typically
bear the majority of the cost of the system. Secondly, P2P applications
improve scalability and reliability, since peers are autonomous and do not
depend on a strong central authority. The third goal is to aggregate re-
sources and to allow interoperability since a centralized approach lends itself

6



www.manaraa.com

naturally to an aggregation of resources. P2P applications increase also au-
tonomy since, in many cases, users of a distributed system do not want to rely
on any centralized provider. This autonomy is completed with an anonymity
and privacy if one do not want anyone to know about his involvement in
the system. The fifth goal is dynamism, since P2P systems assume that the
computing resources will be entering and leaving the system continuously.
Finally, the last goal of P2P systems is to enable effective communication
and collaboration.

Internet Computing applications can be seen as parallelizable P2P ap-
plications, where the same task is performed on each peer using different
parameters. The principle is to use resources of idled computers on the
Internet in order to compute a specific task. As soon as a node computer de-
tects an inactivity it contacts a master client and informs it of its availability
for computing some work. Thus this new activity is totally transparent for
the user.

There are many implementations of such systems: KaZaa, FreeHeaven,
JXTA, Gnutella, Freenet (“Pure” P2P), Napster (“Hybrid” P2P), SETI@Home,
RSA-135 (Internet Computing).

3.2.2 Clusters

A cluster connects complete computers (including processor, memory, I/O
units) and its component computers are loosely connected typically by a
LAN as shown in Figure 3. It is used as a single, unified computing resource,
but is not distributed geographically. Component computers of a cluster
are typically workstations or PCs and are generally homogeneous, and the
first so-called “Beowulf” cluster has been designed in 1994 for the NASA by
Becker and Sterling (see [75]).

A cluster architecture is divided in three non-hierarchical logical tiers:
the Access Tier providing access and authentication services to the users;
the Management Tier responsible for providing the basic cluster services (file
service, backup management,...); the Compute Tier supplying the compute
power for the cluster. Jobs submitted through upper tiers in the architecture
are scheduled to run on one more nodes in the Compute Tiers.

The two critical cluster services are the Batch Queuing System and the
Job Scheduler. The first one is a service that receives job submissions from
users and executes them on the cluster. This software (without supplemental
software) runs jobs on a first come, first serve basis. The second one is a
priority based scheduling service that determines the order of execution for
jobs based on a wide range of criteria: average CPU usage, average resources
usage,...

7



www.manaraa.com

Figure 3: Clusters Architecture

3.2.3 Grid Computing

Grid computing is defined as “coordinated resource sharing and problem
solving in large, multi-institutional virtual organization” by [8]. The term
Grid suggests a computing paradigm similar to an electric power grid. This
is a very new concept and is currently under a heavy phase of Research and
Development. A quite complete review can be found in [2], [18] provides an
economical perspective of this kind of systems, while [69] provides a review
of Grids in the health sector.

Grid applications couple resources that cannot be replicated at a single
site or may be globally located for other reasons. Thus, a Grid is an infras-
tructure that can unify globally and diverse resources. The main issues for
computational grids are heterogeneity since a grid involves a multiplicity of
heterogenous resources; scalability since a grid might grow from few resources
to millions; dynamicity or adaptability since the probability of some resource
failing is high with so many resources.

There are four components necessary to form a grid (see Figure 4): a Grid
Fabric comprising all the resources (computers, clusters,...) geographically
distributed and accessible from anywhere on the Internet; a Grid Middleware
offering core services such as remote process management, co-allocation of
resources, storage access,...; a Grid Development Environment offering high-
level services that allows programmers to develop applications and brokers
that act across global resources; some Grid Applications and Portals devel-
oped using Grid-enabling languages (such as MPI).

There are many grid projects worldwide. We can cite Globus, Legion,
CERN Data Grid, UNICORE,...

8



www.manaraa.com

Figure 4: The Four Grid Components

3.3 Agent-based Distributed Systems

The goal of this kind of systems is to implement processing algorithms in
parallel using a family of mobile agents as described by [40]. At the system
level, task parallelism represents an Object-Oriented design strategy, whereby
both data and the operations on those data are encapsulated in a single entity.
Thus each task has the ability to operate independently, and yet communicate
and exchange data with other tasks. In this context of parallelism, an Agent
is a natural task abstraction. The Task Agent encapsulates the task data,
operations to be performed on that data and the necessary communication
mechanisms. Figure 5 presents a Distributed Agent-based architecture.

Task Agent are associated with two components: the Agent Link serving
as the Agent’s communication interface and the Agent Monitor performing
fault detection by monitoring the parent and the children. They are sup-
ported by an infrastructure composed by various service components. Each
service is available on each node in the system so as to maintain a completely
distributed, fault tolerant execution environment. An example of one such
service is resource supervision that integrates availability and load balancing
components. A resource directory (Registry) is maintained on each node
that contains load and state information. The directory is updated via a dis-
covery process when new resources are added to the system. When a node
becomes unavailable, the local registry is updated by the first agent that has

9



www.manaraa.com

Figure 5: Agent-based Distributed Systems Architecture

attempted to communicate with an agent on that remote node.
As implementations,we can cite the NZDIS Project, ANAISoft, FIPA or

DReAMS.

3.4 Communication Models

3.4.1 Message-Passing Models

The message passing model relies on the idea that independent, sequential
processes running in parallel can communicate with one other via messages
in order to jointly solve a parallel algorithm. Two de-facto standards have
arisen: the Parallel Virtual Machine (PVM, described in [37]) and the Mes-
sage Passing Interface (MPI, fully documented in [62]), and represent two
models.

The central concept of the PVM model is the notion of Virtual Machine
that enables the usage of a heterogeneous system containing different types
of computing nodes. PVM provides a dynamic programming environment
where both processes and computing nodes (called hosts) can be dynami-
cally added or deleted either from the application program or from a system
console. The other important issue in PVM is the highest possible level of
support for interoperability both at the programming language level and in
the communication system. PVM provides also the necessary message format
transformation to hide differences in computer architectures.

The fundamental innovation in the MPI communication concept is the
introduction of the notion of communicator which is a binding between a
communication context and a group of processes. In the MPI approach,
point-to-point process communication is allowed only within a group and

10



www.manaraa.com

for each group there is a unique communicator allocated by MPI. The two
main advantages of MPI over PVM are that its implementations are more
efficient since it support native communication layers of parallel computers,
and that it provides a much richer set of library functions for point-to-point
and collective communication operations.

The lack of interoperability of MPI excludes different MPI application
programs to communicate by message passing. The current PVMPI de-
scribed in [32] solves this problem by proposing a combination of MPI and
PVM process groups in a way that MPI groups can dynamically join and
leave PVM groups that serve as communication relays for the MPI applica-
tion process groups.

3.4.2 Object-Oriented Middlewares

For [9], “middlewares are a class of software technologies designed to help
manage the complexity and heterogeneity inherent in distributed systems”.
Object-Oriented Middlewares are used as an implementation layer over the
network layer for many distributed systems. They are defined as a layer of
software above the operating system but below the application program that
provides a common programming abstraction across a distributed system
(see Figure 6). They resolve heterogeneity of hardware, operating systems,
networks or programming languages and, thus, can be considered as software
that make a distributed system programmable.

Figure 6: Principle of Middlewares

11



www.manaraa.com

There are six fundamental middleware subcomponents: database gate-
ways, network gateways, transaction processing monitors, message-oriented
middleware, object request brokers and distributed services. Database and
network gateways serve as translators to connect dissimilar processes, pro-
tocols or platforms. Transaction processing monitors, message-oriented mid-
dlewares and object request brokers distribute and manage transactions and
messages. Distributed services deliver access to specialized system resources
such as print, file, security and directory services.

The basic Object-Oriented concepts of data encapsulation, inheritance
and polymorphism provide a solid basis to separate the specification of com-
putation from the implementation. Currently, three major Object-Oriented
systems are used: Java Remote Method Invocation (RMI), the Common Ob-
ject Request Architecture (CORBA) and the Distributed Common Object
Model (DCOM/COM+).

3.4.3 Web Services

Web Services are founded on the concept of “Service-Oriented Architectures”
which enables the greater use of existing applications by creating services
that can be reused. Thus a Service-Oriented Architecture minimizes the
need for extensive rewriting of code. Web Services are services offered across
a network using existing Web infrastructure. They are based on industry
standards and are interoperable whitin company boundaries, or across many
companies. They are also cross-platform and cross-language. Their main
benefits are that they are rapid to deploy and that they increase value of
existing applications.

Figure 7: Layers of Web Services

12



www.manaraa.com

Web Services are constituted of six layers as shown in Figure 7: Ser-
vice Flow, Service Discovery and Service Publication, Service Description,
XML-based Messaging and finally Network. These layers are implemented
using five main de-facto standards. WSFL (Web Services Flow Language)
is an XML-based language for the description of Web Services compositions
as part of a business process definition (Service Flow). UDDI (Universal
Description, Discovery and Integration) is an XML-based registry for busi-
nesses worldwide, which enables them to list themselves and their services
on the Internet (Service Discovery and Service Publication). WSDL (Web
Services Description Language) is an XML-based language used to describe
the services a business offers and to provide a way to other businesses to
access these services (Service Description). SOAP (Simple Object Access
Protocol) is a way for a program running on one kind of operating system
to communicate with a program running on the same or on another kind of
operating system by using HTTP and XML as mechanisms for information
exchange (XML-based Messaging). Finally, HTTP, FTP or e-mail are the
choices for the networking layer. This kind of architecture is well described
by [45].

Implementations and applications are currently being developed. We can
cite Microsoft’s .Net and its Open-Source implementation MONO, or Sun’s
Open Net Environment (ONE).

4 Distributed Technologies for

Bioinformatics

In this section, we present systems classified following the section 3 (in the
alphabetical order) that are employed in the bioinformatics field. We can
note that some of them are not specially defined for this research field but
they all have been used in this area.

4.1 Classical Client/Server Systems

Classical Client/Server applications are the most used in the bioinformatics
world. The main reason is that the available public databases can be ac-
cessed using Web-based frontends and a simple Web browser. Even if the
hidden framework of these databases is large and complex, researchers can
use them in a very easy and user-friendly way. This kind of use is certainly
the optimal one for classical Client/Server systems since they can not provide
computational resources.

13



www.manaraa.com

3D-PSSM: 3D-PSSM is a Web-based tool dedicated to protein fold recog-
nition using 1D and 3D sequence profiles. The website proposes two
query submission pages, a simple one and a more advanced one. [51],
[14] and [50] present this tool and how it can be employed.
Main URL: http://www.sbg.bio.ic.ac.uk/~3dpssm/

BLAST and Variants: BLAST (Basic Local Alignment Search Tool) is a
heuristic method to find the highest scoring locally optimal alignments
between a query sequence and a database . It is without any doubts the
most commonly employed tool in bioinformatics and is usually runned
using a Web-based frontend. The most known is at NCBI, but many
frontends can be found (like EBI’s). Many references on BLAST can
be found in the literature. We can cite [5] and [6] as founding articles,
and [58] or [53] for more practical information.
Main URL: http://www.ncbi.nih.gov/BLAST/

Clustal W: Clustal W is a multiple sequence alignment software for DNA
or proteins. As for BLAST, many Web frontends can be found. We can
cite EMBL-EBI’s, CMBI’s or GenomeNet’s. This software is presented
in [79] or [20], while [56] proposes an MPI-based implementation. As
an example of application, we can cite [19].
Main URL: http://www.ebi.ac.uk/clustalw/

COMBOSA3D: COMBOSA3D is a tool allowing to color protein struc-
tures using sequence alignment information. The Web-based interface
uses the Chime or RasMol browser plugins for the visualization. A
presentation of this tool can be found in [76].
Main URL: http://bioinformatics.org/combosa3d/

DAS: DAS (the Distributed Annotation System) is a client-server system al-
lowing to exchange annotations on genomic sequence data. The website
provides an inventory of some DAS public servers. The main reference
of this tool is provided by [28].
Main URL: http://biodas.org/

HMMER: HMMER is an implementation of profile hidden Markov models
for biological analysis. It is distributed as a software package, and
some Web-based frontends can be found. We can cite for example the
IFOM HMMER Server or NPS@’s. [30] provides a complete manual of
this system, while [31] and [88] propose some complementary high-level
descriptions and applications.
Main URL: http://hmmer.wustl.edu/

14



www.manaraa.com

Swiss-Model: Swiss-Model is an automated protein structure homology-
modeling server. It proposes a set of Web-based tools like Swiss-
PdbViewer (for viewing and manipulating protein structures and mod-
els) or search engines and is described in [73], [43] or [70].
Main URL: http://www.expasy.org/swissmod/SWISS-MODEL.html

T-Coffee: T-Coffee is also a multiple sequence alignment package for DNA
or proteins. EMBnet or Notre Dame University provide Web-based
frontends to this tool. We can cite [66] and [65] as main references.
Main URL: http://www.ch.embnet.org/software/TCoffee.html

4.2 Peer-To-Peer Systems

Peer-to-Peer systems are beginning to be used in the bioinformatics area,
mainly in order to provide an easier data access between connected hosts.
These data can be classical data of biological databases or even user-defined
ones, and are often encapsulated in generic formats (often XML-based). A
good starting point for this kind of systems is [68].

BioMOBY: BioMOBY is a workflow framework. Its primary goal is to al-
low a client to interact with multiples sources of biological data regard-
less of the underlying format or schema. A unique object format is de-
fined, MOBY-Object, and three entities are used: one MOBY-Central
host, one or more MOBY-Server hosts and one or more MOBY-Client
hosts. The MOBY-Central receives declarations of services provided
by MOBY-Servers and requests from MOBY-Clients that are passed
to MOBY-Servers. BioMOBY uses Web-Services technologies (WSDL
for service description and XML as MOBY-Objects). BioMOBY is
presented in [85] and also in [21].
Main URL: http://biomoby.org/

BioPipe: BioPipe is also a workflow framework designed to work intimately
with the BioPerl package and is able to handle various input and output
data from various databases. Another goal of BioPipe is to provide an
explicit protocol-based approach to bioinformatics analysis, in order to
facilitate data interpretation and discussion by external parties. Four
main components are used: an Input Layer that fetches the inputs to an
analysis, an Analysis Layer that specifies the expected inputs from the
Input Layer, an Output Layer that stores the output from the analysis
layer, and finally a Job Management System (implemented using the
MySQL database) that ensures that the job is well maintained as it

15



www.manaraa.com

goes through each of the three layers.
Main URL: http://www.biopipe.org/

GreenTea: GreenTea is a Java-based generic runtime that facilitates the
services of P2P computing. It is a total resource aggregation and
resource sharing platform including hardware and software resources
(in fact, it can be seen also as a Grid OS). While being not specially
bioinformatics-oriented, it has been successfully used to run NCBI’s
standalone BLAST, and serves currently as a basis to the ABSmith
project (A Smith-Waterman Algorithm).
Main URL: http://www.greenteatech.com/

4.3 Clusters Systems

As expected, clusters are used for their computational power. We can note
that the Linux OS is mainly used in these kind of architectures. The main
starting point in this optic is [57].

BeoBLAST: BeoBLAST is a package for performing distributed BLAST
and psi-BLAST runs on a Beowulf cluster. The integrated Web-based
frontend allow users to select multiple databases or to specify multiple
queries. This software is based upon the GNU Queue, the GNU load-
balancing system, and uses local copies of sequence databases retrieved
from NCBI using a Unix cron job. The system is described in [41].
Main URL: http://bioinformatics.fccc.edu/software/OpenSource/
beoblast/beoblast.shtml

BioBrew: BioBrew is a Linux-based Open-Source bioinformatics cluster so-
lution. It contains all necessary cluster and bioinformatics software.
MPI or PVM can be used as communication models, the Sun Grid
Engine (SGE) is included as well as all the necessary software to run
Ganglia (distributed monitoring and execution system), PVFS (Paral-
lel Virtual File System) or Globus. It has been successfully employed
with the NCBI Toolkit, mpiBLAST, HMMER, Clustal W or FASTA.
BioBrew is described in [67]
Main URL: http://www.callident.com/

4.4 Grid Computing Systems

Grid computing is certainly one of the most exciting and promising improve-
ment of Internet-based tools. All the systems presented here are currently
in research and development phases (even Globus which is by far the most

16



www.manaraa.com

advanced and used), but some of them have been employed in very strong
and precise researches (see references). More grid projects can be found at
[71], at [42] or at [29], and many of the systems presented here are described
more precisely in the excellent review provided by [47].

ALiCE: ALice (Adaptive and scalable Internet-based Computing Engine)
is a platform-independent, Java based grid middleware. It comprises
three types of entities: a resource broker, service producers and service
consumers.
Main URL: http://www.comp.nus.edu.sg/~teoym/alice/alice-tech.
htm

Condor: Condor is defined as a specialized workload management system
for compute-intensive jobs. The goal of the project is to develop mech-
anisms and policies that support high-throughput computing on large
collections of computing resources. [78], [13] and [77] present this
project.
Main URL: http://www.cs.wisc.edu/condor/

Discovery Net System: Discovery Net System is a grid middleware en-
abling the composition of reusable workflows that can be later re-
deployed as new services for other uses. This system is described in
[72] and [25].
Main URL: http://www.discovery-on-the.net/new/index.php

Globus: Globus is the most known and used of grid-enabling systems. It is
released as a toolkit proposing a set of components that can be used
independently or together. We can cite as components a resource al-
location manager, security infrastructure, a monitoring and discovery
service or a failure detector as described in [36] or [3]. Globus 3.0 is
the first full major implementation of the Open Grid Services Archi-
tecture (OGSA well described by [27] and presented also in [4]), an
open standard for grid computing. As an application of Globus in the
Bioinformatics area, we can cite [33].
Main URL: http://www.globus.org/

GrADS: GrADS (Grid Application Development Software) is a multi-university
project intending to provide tools and technologies for the development
and applications in a grid environment. In this system, the user simply
presents his parallel application to the framework. This framework is
then responsible for scheduling the application on an appropriate set
of resources and launching and scheduling the execution. [15] presents

17



www.manaraa.com

the project while [87] provides an example of use of this system for
sequence alignment.
Main URL: http://nhse2.cs.rice.edu/grads/

Grid Engine: Sun ONE Grid Engine is available in two versions: SGE and
SGE Enterprise Edition. This middleware requires no alterations to
applications to be distributed. More information can be found in [22]
and [23].
Main URL: http://wwws.sun.com/software/gridware/

GriPhyN: GriPhyN is a collaboration of computer science researchers and
experimental physicists to enable a grid system following two approaches:
apply a methodical and organized data management using the virtual
data concept and developing automated request scheduling mechanisms
in order to make large grids easy to use as single computers.
Main URL: http://www.griphyn.org/index.php

Legion: Legion enables the connection of networks of computers using an
independent element approach. There is no central element and the
proposed framework permits scheduling and distributing processes as
in a single, virtual machine. More information can be found in [64],
and an example of use can be found in [84].
Main URL: http://www.cs.virginia.edu/~legion/

Metacomputer OnLine: Metacomputer OnLine (known as MOL) is de-
signed as an open, extensible software system comprising a variety of
software modules. In contrast to other grid environments, MOL is not
based on specific models or tools.
Main URL: http://www.uni-paderborn.de/pc2/projects/

NetSolve: NetSolve is a grid framework focusing on three main points: ease-
of-use for the end-user, efficient use of the resources and the ability to
integrate any arbitrary software component as a resource into the Net-
Solve system. More information, as well as a grid concept description
can be found in [7] or [1].
Main URL: http://icl.cs.utk.edu/netsolve/

OBIGrid: OBIGrid is a grid network providing bioinformatics-oriented ser-
vices: a genome annotation system, a gene network simulator, a bioin-
formatics dispatcher and a scalable genome database.
Main URL: http://www.obigrid.org/

18



www.manaraa.com

Polder: Polder is a metacomputing environment concerned with the optimal
mapping of models onto parallel computer systems. The first studies
were based on models using cellular automata, virtual particles and
natural solvers. [46] and [82] present this system.
Main URL: http://www.science.uva.nl/research/scs/SCS4.html

SRB: SRB (Storage Resource Broker) is a grid middleware providing a uni-
form interface for connecting to heterogeneous data resources over a
network.
Main URL: http://www.npaci.edu/DICE/SRB/

4.5 Distributed Agent-based Systems

Distributed Agent-based systems are currently essentially used in the bioin-
formatics area for data-mining and information use. In fact, they act often
as P2P systems plus a data study system.

BioAgent: BioAgent is an agent-based system allowing a complete decen-
tralization of local tasks processing. The system is divided in four
layers: the Core layer providing basic distributed features, the Ser-
vice Agents layer providing a set of services available in a single place,
the BioAgents layer providing the set of mobile agents and the Work-
flow layer providing a definition language. Its main application are
to provide an efficient access to biological services accessing local data
repositories or local experimental techniques. More information can be
found in [60].
Main URL: http://www.bioagent.net/

BioMAS/DECAF: DECAF is a multi-agent toolkit and each DECAF
agent has been defined as a set of modules that work together to control
an agent’s life cycle. This toolkit has been extended in BioMAS to de-
fine a reusable information gathering system for bioinformatics. Three
types of agents have been defined: Information Extraction Agents able
to query public databases (using BLAST services), Task Agents re-
sponsible for the data processing and the Interface Agents providing a
read-write access to a local knowledge-base. DECAF is described in
[39] and [59].
Main URL: http://www.eecis.udel.edu/~decaf/

GeneWeaver: GeneWeaver is a multi-agent system dedicated to the domain
of genome analysis and protein structure prediction. In this system,
agents can be concerned with management of primary databases, with

19



www.manaraa.com

performing sequence analysis using existing tools or with storing and
presenting resulting information. The main point of this project is
that it does not provide new methods for performing these tasks, but
organizes existing ones in an efficient way. This system is described in
[16] and [17].
Main URL: http://www.ecs.soton.ac.uk/~mml/gw.html

5 Conclusion

We presented in this article a review of distributed systems used in bioin-
formatics. An historical perspective has shown the evolution of distributed
systems since the beginning of the sixties and has led to recent applications
of distributed computing to bioinformatics, like the Decrypton project where
the 50000 protein sequences known at the end of year 2001 were compared
with each other. A taxonomy has been given with definitions to help under-
standing the differences between Client/Server, Peer to Peer, Clusters, Grids
and Agent-based Distributed systems. The communication models have also
been discussed, classical message passing interfaces, object-oriented middle-
wares and the more recent Webservices. We have then listed a set of bioinfor-
matics tools, classified according the previously established taxonomy, and
that take benefit of distributed computing. It was out of the scope of this
survey to describe and to compare such tools but websites and references are
provided for each tool and thus the interested reader will be able to access
more information. We did not provide any descriptions of proprietary or
non-free solutions since we privileged Open-Source or educational systems.
Some such solutions exist but are most of the time association of proprietary
software and hardware.

The main conclusion that arises is that the bioinformatics research field is
a very huge and promising one. “Classical” distributed systems like Client/Server,
P2P are currently the most employed, but many researches are directed to-
wards grid computing or agent-based systems. The fact is that these kinds
of approaches are extensible to other domains but that bioinformatics fits
very well in their objectives of computational power (Grids) or data-mining
(Agents).

20



www.manaraa.com

References

[1] S. Agrawal. Hardware Software Server in NetSolve. Technical report,
ICL, 2002.

[2] R.J. Allan and M. Ashworth. A Survey of Distributed Computing, Com-
putational Grid, MetaComputing and Network Information Tools. Tech-
nical report, UKHEC, 2001.

[3] W. Allcock, A. Chervenak, I. Foster, L. Pearlman, V. Welch, and
M. Wilde. Globus Toolkit Support for Distributed Data-Intensive Sci-
ence. In Proceedings of Computing in High Energy Physics (CHEP ’01),
2001.

[4] M.N. Alpdemir, A. Mukherjee, N.W. Paton, P. Watson, A.A. Fernandes,
and A. Gounaris. OGSA-DQP - A Service-based Distributed Query
Processor for the Grid. In EPSRC, editor, Proceedings of UK e-Science
All Hands Meeting Nottingham, 2003.

[5] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic
Local Alignment Search Tool. Journal of Molecular Biology, 215:403–
410, 1990.

[6] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, W. Miller, and
D.J. Lipman. Gapped BLAST and PSI-BLAST - A New Generation
of Protein DB Search Programs. Nucleid Acids Research, 25(17):3389–
3402, 1997.

[7] D.C. Arnold, S.S. Vahdiyar, and J.J. Dongarra. On the Conver-
gence of Computational and Data Grids. Parallel Processing Letters,
11(2&3):187–202, 2001.

[8] M. Baker, R. Buyya, and D. Laforenza. Grids and Grid Technologies for
Wide-Area Distributed Computing. Software - Pratice and Experience,
(488), 2002.

[9] D.E. Bakken. Middleware Definition. Encyclopedia of Distributed Com-
puting, 2003. Kluwer Academic Press.

[10] A.L. Barabasi. Parasitic Computing - Supplementary Material. Techni-
cal report, University of Notre-Dame, 2001.

[11] A.L. Barabasi, V.W. Freeh, H. Jeong, and J.B. Brockman. Parasitic
Computing. Nature, 412, 30 August 2001.

21



www.manaraa.com

[12] D. Barkai. An Introduction to Peer to Peer Computing. Intel Developer
UPDATE Magazine, February 2001.

[13] J. Basney, M. Livny, and T. Tannenbaum. High Throughput Computing
with Condor. HPCU News, 1(2), 1997.

[14] B.A. Bates, L.A. Kelley, R.M. MacCallum, and M.J. Sternberg. En-
hancement of protein modeling by human intervention in applying the
automatic programs 3D-JIGSAW and 3D-PSSM. Proteins, Suppl 5:39–
46, 2001.

[15] F. Berman, A. Chien, K. Coope, J Dongarra, I. Foster, and D. Gannon.
The GrADS Project - Software Support for High-Level Grid Application
Development. International Journal of High Performance Computing
Applications, 15(4), 2001.

[16] K. Bryson, M. Luck, M. Joy, and D. Jones. Applying Agents to Bioinfor-
matics in GeneWeaver. Cooperative Information Agents IV, (1860):60–
71, 2000. Lecture Notes in Artificial Intelligence.

[17] K. Bryson, M. Luck, M. Joy, and D. Jones. Agent Interaction for Bioin-
formatics Data Management. Applied Artificial Intelligence, 15(10):917–
947, 2001.

[18] R. Buyya. Economic-based Distributed Resource Management and
Scheduling for Grid Computing. PhD thesis, Monash University, 2002.
Melbourne, Australia.

[19] U. Catalyurek, E. Stahlberg, R. Ferreira, T. Kurc, and J. Saltz. Im-
proving Performance of Multiple Sequence Alignment Analysis in Multi-
Client Environments. In Proceedings of the First International Workshop
on High Performance Computational Biology (HiCOMB), 2002.

[20] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, and D.G.
Higgins. Multiple Sequence Alignment with the Clustal Series of Pro-
grams. Nucleic Acids Research, 31(13):3497–3500, 2003.

[21] M. Chicurel. Bioinformatics - bringing it all together. Nature, (419):751–
757, 2002.

[22] J. Coomer and C. Chaubal. Introduction to the Cluster Grid - Part 1.
Technical report, Sun BluePrints, 2002.

[23] J. Coomer and C. Chaubal. Introduction to the Cluster Grid - Part 2.
Technical report, Sun BluePrints, 2002.

22



www.manaraa.com

[24] A.F. Coulson, J.F. Collins, and A. Lyall. Protein and Nucleic Acid
Sequence Database Searching - A Suitable Case for Parallel Processing.
Computer Journal, (39):420–424, 1987.

[25] V. Curcin, M. Ghanem, Y. Guo, M. Kohler, J. Syed, and P. Wendel.
Discovery Net - Towards a Grid of Knowledge Discovery. In Proceedings
of KDD 2002, 2002.

[26] S.O. Denn and W.J. MacMullen. The Ambiguous Bioinformatics Do-
main - A Conceptual Map of Information Science Applications to Molec-
ular Biology. In Proceedings of the 65th Annual Meeting of the American
Society for Information Science and Technology, 2002.

[27] DeveloperWorks. A visual tour of Open Grid Services Architec-
ture - OGSA, 2003. http://www-106.ibm.com/developerworks/grid/
library/gr-visual/index.htm%l.

[28] R.D. Dowel, R.M. Jokerst, A. Day, S.R. Eddy, and L. Stein. The Dis-
tributed Annotation System. BMC Bioinformatics, 2(1), 2001.

[29] DSOnline. Grid Computing - European Projects, 2003. http://

dsonline.computer.org/gc/gcprojects-european.htm.

[30] S. Eddy. HMMER’s User Guide. Howard Hughes Institute, Washington
University School of Medicine, 2003.

[31] S.R. Eddy. Hidden Markov models and Large-Scale Genome Analysis.
Transactions of the American Crystallographic Association, 1997.

[32] G.E. Fagg and J.J. Dongarra. PVMPI - An Integration of the PVM and
MPI Systems. Technical report, University of Tenessee, 1996.

[33] C. Ferrari, C. Guerra, and G. Zanotti. A Grid-Aware Approach to Pro-
tein Structure Comparison. Journal of Parallel and Distributed Com-
puting, 63:728–737, 2003.

[34] M.J. Flynn. Some Computer Organizations and their Effectiveness.
IEEE Transactions on Computers, C-21, 1972.

[35] I. Foster. Designing and Building Parallel Programs, 1994. http://

www-unix.mcs.anl.gov/dbpp/.

[36] I. Foster and C. Kesselman. Globus - A Metacomputing Infrastructure
Toolkit. International Journal of Supercomputer Applications, 11(2),
2001.

23



www.manaraa.com

[37] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram. PVM - Parallel Virtual Machine - A Users’ Guide and Tutorial
for Networked Parallel Computing. MIT Press , 1994.

[38] C. Gibas and P. Jambeck. Developing Bioinformatics Computer Skills.
OReilly, 2001.

[39] J.R. Graham, K.S. Decker, and M. Mersic. DECAF - A Flexible Multi
Agent System Architecture. Autonomous Agents and Multi-Agent Sys-
tems, 2003. to appear but available online.

[40] J.R. Graham, V. Windley, D. McHugh, F. McGeary, D. Cleaver, and
K. Decker. A Programming and Execution Environment for Distributed
Multi Agent Systems. In Proceedings of the 4th International Conference
on Autonomous Agents, 2000. Workshop on Agents in Industry.

[41] J.D. Grant, R.L. Dunbrack, F.J. Manion, and M.F. Ochs. BeoBLAST
- Distributed BLAST and PSI-BLAST on a Beowulf Cluster. Bioinfor-
matics, 18(5):765–766, 2002.

[42] GridComputing.org. Grid Computing Info Centre - GRID InfoWare,
2003. http://www.gridcomputing.com/.

[43] N. Guex and M.C. Peitsch. SWISS-MODEL and the Swiss-PdbViewer
- an Environment for Comparative Protein Modeling. Electrophoresis,
18(15):2714–2723, 1997.

[44] L. Hunter. Molecular Biology for Computer Scientists, chapter 1. AAAI
Press Book, MIT Press edition, 2002.

[45] Integra. A Definition of Web Services. Technical report, Integra - Ge-
nuity, 2002.

[46] K.A. Iskra, R.G. Bellema, G.D. vanAlbada, J. Santoso, P.M. Sloot, and
H.E. Bal. The Polder Computing Environment - a system for interactive
distributed simulation. Concurrency and Computation: Practice and
Experience, 14, 2002. Special Issue on Grid Computing Environments.

[47] P. Kacsuk and F. Vajda. Network-Based Distributed Computing - Meta-
computing. Technical report, ERCIM, 1999.

[48] M. Karaul. Metacomputing and Resource Allocation on the World Wide
Web. PhD thesis, New York University, 1998. Department of Computer
Science.

24



www.manaraa.com

[49] H. Kargupta. Distributed Data Mining Bibliography, 2003. http://

www.csee.umbc.edu/~hillol/DDMBIB/.

[50] L. Kelley, R. MacCallum, and M.J. Sternberg. Recognition of remote
protein homologies using three-dimensional information to generate a
position specific scoring matrix in the program 3D-PSSM. In ACM,
editor, RECOM99 - Proceedings of the Third Annual Conference on
Computational Molecular Biology, 1999. New-York.

[51] L. Kelley, R. MacCallum, and M.J. Sternberg. Enhanced genome an-
notation using structural profiles in the program 3D-PSSM. Journal of
Molecular Biology, 299(2):499–520, 2000.

[52] Kent-University. Internet Parallel Computing Archive, 2003. http:

//wotug.kent.ac.uk/parallel/.

[53] H.S. Kim, H.J. Kim, and D.S. Han. Hyper-BLAST - A Parallelized
BLAST for Speedup of Similarity Search. Technical report, Information
and Communications University, Korea, 2003.

[54] L. Kleinrock. Information Flow in Large Communication Networks. RLE
Quarterly Progress Report, July 1961.

[55] L. Kleinrock. Communication Nets - Stochastic Message Flow and De-
lay. McGraw-Hill, 1964. later re-issued by Dover Books.

[56] L. Kuo-Bin. ClustalW-MPI - ClustalW Analysis Using Distributed and
Parallel Computing. Bioinformatics, 19(12):1585–1586, 2003.

[57] LCIC. Linux Clustering Information Center, 2003. http://www.lcic.

org/.

[58] S. Markel and D. Leon. BLAST, chapter 7. OReilly, Sequence Analysis
in a Nutshell edition, 2003.

[59] F. McGeary and K. Decker. DECAF Programming - Agents for Un-
dergraduates. In Proceedings of the 5th International Conference on
Autonomous Agents, 2001. Workshop on Infrastructure for Scalable
Multi-Agent Systems.

[60] E. Merelli, L. Culmone, and L. Mariani. BioAgent - A Mobile Agent
System for Bioscientists. In Proceedings of NETTAB02, 2002. Agents
in Bioinformatics.

25



www.manaraa.com

[61] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, and
B. Richard. Peer to Peer Computing. Technical report, HP Laboratories
Palo Alto, 2002.

[62] MPI-Forum. MPI Standard 2.0. MPI, 2003.

[63] Sape Mullender. Distributed Systems. Addison-Wesley, 1993. University
of Twente.

[64] A. Natrajan, M. Humphrey, and A. Grimshaw. Capacity and Capa-
bility Computing in Legion. In Proceedings of the 2001 International
Conference on Computational Science, 2001.

[65] C. Notredame, D.G. Higgins, and J. Heringa. T-Coffee - A novel method
for multiple sequence alignments. Journal of Molecular Biology, 302:205–
217, 2000.

[66] C. Notredame, L. Holme, and D.G. Higgins. COFFEE - A New Ob-
jective Function For Multiple Sequence Alignmnent. Bioinformatic,
14(5):407–422, 1998.

[67] G. Otero. Biopackage Repository and BioBrew Linux Projects. In Pro-
ceedings of the OReilly Bioinformatics Technology Conference, 2003.

[68] P2P4B2B. P2P4B2B - Non-Commercial Peer-to-Peer Efforts, 2003.
http://www.stratvantage.com/directories/p2pworkgroups.htm.

[69] Y.P. Paindaveine. HealthGRID - Old Wine in New Bottle. In Healthgrid,
editor, Proceedings of the First European HealthGrid Conference, pages
20–27, 2003. Lyon, France.

[70] M.C. Peitsch. ProMod and Swiss-Model - Internet-based Tools for Au-
tomated Comparative Protein Modelling. Biochemical Society Transac-
tions, 24(1):274–279, 1996.

[71] Globus Project. Globus Related Projects, 2003. http://www.globus.

org/about/related.html.

[72] A. Rowe, D. Kalaitzopoulos, M. Osmond, M. Ghanem, and Y. Guo. The
Discovery Net System for High Throughput Bioinformatics. Bioinfor-
matics, 19:i225–i231, 2003.

[73] T. Schwede, J. Kopp, N. Guex, and M.C. Peitsch. SWISS-MODEL - An
automated protein homology-modeling server. Nucleic Acids Research,
pages 3381–3385, 2003.

26



www.manaraa.com

[74] L.D. Stein. Integrating Biological Databases. Nature Reviews Genetics,
(4):337–345, 2003.

[75] T. Sterling, D. Savarese, D.J. Becker, J.E. Dorband, U.A. Ranawake,
and C.V. Packer. BEOWULF - A Parallel Workstation for Scientific
Computation. In Proceedings of the 24th International Conference on
Parallel Processing, pages I:11–14, 1995. Oconomowoc, WI.

[76] P.M. Stothard. COMBOSA3D - combining sequence alignments with
three-dimensional structure. Bioinformatics, 17(2):198–199, 2001.

[77] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A Dis-
tributed Job Scheduler, chapter 15. The MIT Press, 2002. Beowulf
Cluster Computing with Linux.

[78] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid, chap-
ter 11. John Wiley, Grid Computing - Making The Global Infrastructure
a Reality edition, 2003.

[79] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W - improv-
ing the sensitivity of progressive multiple sequence alignment through
sequence weighting position specific gap penalties and weight matrix
choice. Nucleic Acids Research, 22:4673–4680, 1994.

[80] O. Trelles. On the Parallelisation of Bioinformatics Applications. Brief-
ings in Bioinformatics, 2(2):181–194, 2001.

[81] Utyx. Bioinformatics Resources, 2003. http://utyx.com/

bioinformatics/bioinformatics-tools.html.

[82] A.W. vanHalderen, B.J. Overeinder, P.M. Sloot, R. vanDantzig, D.H.
Epema, and M. Livny. Hierarchical Resource Management in the Polder
Metacomputing Initiative. Parallel Computing, 24(12/13):1807–1825,
1998.

[83] V. Veeramachaneni, P. Berman, and W. Miller. Aligning Two Frag-
mented Sequences. In Proceedings of the First International Workshop
on High Performance Computational Biology (HiCOMB), 2002.

[84] A. Waugh, G.A. Williams, L. Wei, and R.B. Altman. Using Metacom-
puting tools to facilitate Large-Scale Analyses of Biological Databases.
In Proceedings of the 2001 Pacific Symposium on Biocomputing, 2001.

[85] M.D. Wilkinson and M. Links. BioMOBY - An Open Source Biological
Web-Service Proposal. Briefings in Bioinformatics, 3(4):331–341, 2002.

27



www.manaraa.com

[86] T.K. Yap, O. Frieder, and R.L. Martino. Parallel Computation in Biolog-
ical Sequence Analysis. IEEE Transactions on Parallel and Distributed
Systems, 9(3):283–294, March 1998.

[87] A. YarKhan and J.J. Dongarra. Biological Sequence Alignment on the
Computational Grid using the GrADS Framework. Bioinformatics Com-
puting, 2003. submitted but available online.

[88] Z. Zhang and W.I. Wood. A profile hidden Markov model for signal
peptides generated by HMMER. Bioinformatics, (19):307–308, 2003.

28


